AI普及给嵌入式设计人员带来新挑战
2024/9/10 13:29:12 标签:中国传动网
探讨了人工智能(AI)的普及给嵌入式设计人员带来的新挑战。在创建“边缘机器学习(ML)”应用时,设计人员必须确保其能有效运行,同时最大限度地降低处理器和存储开销,以及物联网(IoT)设备的功耗。
从监控和访问控制到智能工厂和预测性维护,基于机器学习(ML)模型构建的人工智能(AI)在工业物联网边缘处理应用中已变得无处不在。随着这种普及,支持AI的解决方案的构建已经变得“大众化”——从数据科学家的专业领域转为嵌入式系统设计人员也需要了解的领域。这种大众化带来的挑战在于,设计人员并不一定具备定义要解决的问题以及以最恰当方式捕获和组织数据的能力。此外,与消费类解决方案不同,工业AI实现的现有数据集很少,通常需要用户从头开始创建自己的数据集。
融入主流
AI已经融入主流,深度学习和机器学习(DL和ML)是我们现在习以为常的许多应用的背后力量,这些应用包括自然语言处理、计算机视觉、预测性维护和数据挖掘。早期的AI实现是基于云或服务器的,需要大量的处理能力和存储空间,以及AI/ML应用与边缘(终端)之间的高带宽连接。尽管生成式AI应用(如ChatGPT、DALL-E和Bard)仍然需要此类设置,但近年来已经出现了边缘处理的AI,即在数据捕获点实时处理数据。边缘处理极大减少了对云的依赖,使整体系统/应用更快、需要更少的功耗并且成本更低。许多人认为安全性得到了提高,但更准确地说,主要的安全重点从保护云与终端之间的通信转移到了使边缘设备更安全。
边缘的AI/ML可以在传统的嵌入式系统上实现,这些系统的设计人员可以使用强大的微处理器、图形处理单元和丰富的存储器器件,即类似于PC的资源。然而,越来越多的商业和工业物联网设备需要在边缘具备AI/ML功能,这些设备通常硬件资源有限,而且在许多情况下由电池供电。
在资源和功耗受限的硬件上运行的边缘AI/ML的潜力催生了“TinyML”这一术语。实际用例涵盖工业(如预测性维护)、楼宇自动化(环境监控)、建筑施工(监督人员安全)和安防等领域。
数据流
AI(及其子集ML)需要从数据捕获/收集到模型部署的工作流程(见图1)。对于TinyML而言,由于嵌入式系统资源有限,因此每个工作流程阶段的优化至关重要。
例如,TinyML的资源需求被认为是1 MHz到400 MHz的处理速度、2 KB到512 KB的RAM和32 KB到2 MB的存储空间(闪存)。此外,150µW至23.5 mW的小功耗预算也常常带来挑战。
此外,在将AI嵌入资源有限的嵌入式系统时,还有更重要的考虑因素或权衡。模型是系统行为的关键,但设计人员经常发现自己在模型质量/精度(影响系统可靠性/依赖性和性能,主要是运行速度和功耗)之间做出妥协。
另一个关键因素是决定使用哪种类型的AI/ML。通常有三种算法可供使用:监督学习、无监督学习和强化学习。
解决方案
即使是对AI和ML有良好理解的设计人员,可能也会在优化AI/ML工作流程的每个阶段并在模型精度与系统性能之间找到完美平衡方面遇到困难——那么缺乏以往经验的嵌入式设计人员如何应对这些挑战呢?
首先,重要的是不要忽视一个事实:如果模型小且AI任务仅限于解决简单问题,那么部署在资源有限的物联网设备上的模型将会更有效。
幸运的是,ML(特别是TinyML)进入嵌入式系统领域,带来了新的(或增强的)集成开发环境(IDE)、软件工具、架构和模型——其中许多都是开源的。例如,TensorFlow™ Lite for Microcontrollers(TF Lite Micro)是一个面向ML和AI的免费开源软件库,它专为在只有几KB存储器的器件上实现ML而设计。此外,程序可以用开源和免费的Python语言编写。
关于IDE,Microchip的MPLAB® X就是此类环境的一个示例。该IDE可与公司的MPLAB ML一起使用,MPLAB ML是专门开发的MPLAB X插件,用于构建优化的AI物联网传感器识别代码。MPLAB ML由AutoML提供支持,可将AI ML工作流程的每一步完全自动化,无需重复、繁琐和耗时的模型构建。特征提取、训练、验证和测试确保满足单片机和微处理器存储器限制的优化模型,使开发人员能够快速在基于Microchip Arm® Cortex®的32位MCU或MPU上创建和部署ML解决方案。
流程优化
工作流程优化任务可以通过使用现成的数据集和模型来简化。例如,如果一个支持ML的物联网设备需要图像识别,从现有的标记静态图像和视频片段数据集开始进行模型训练(测试和评估)是合理的;需要注意的是,监督学习算法需要标记数据。
许多图像数据集已经存在于计算机视觉应用中。然而,由于它们是为基于PC、服务器或云的应用设计的,通常都很大。例如,ImageNet包含超过1400万张标注图像。
根据ML应用的不同,可能只需要少量子集;例如,有很多人但只有少量静物的图像。例如,如果在建筑工地使用支持ML的摄像头,当有不戴安全帽的人进入其视野时,它们可以立即发出报警。ML模型需要训练,但可能只需要少量戴或不戴安全帽的人的图像。然而,对于帽子类型,可能需要更大的数据集和足够的数据集范围,以考虑不同的光照条件等各种因素。
图1中第1步到第3步的内容分别是获得正确的实时(数据)输入和数据集、准备数据和训练模型。模型优化(第4步)通常是压缩,这有助于减少存储器需求(处理期间的RAM和用于存储的NVM)和处理延迟。
在处理方面,许多AI算法(如卷积神经网络(CNN))在处理复杂模型时会遇到困难。一种流行的压缩技术是剪枝(见图2),剪枝有四种类型:权重剪枝、单元/神经元剪枝和迭代剪枝。
量化是另一种流行的压缩技术。量化是将高精度格式(如32位浮点(FP32))的数据转换为低精度格式(如8位整数(INT8))的过程。量化模型(见图3)的使用可以通过以下两种方式之一纳入机器训练。
训练后量化涉及使用FP32格式的模型,当训练完成后,再进行量化以便部署。例如,可以使用标准TensorFlow在PC上进行初始模型训练和优化。然后模型可以进行量化,并通过TensorFlow Lite嵌入到物联网设备中。
量化感知训练可仿真推断时量化,创建一个模型供下游工具用于生成量化模型。
虽然量化很有用,但不应过度使用,因为它类似于通过使用较少的位表示颜色和/或使用较少的像素来压缩数字图像——即,会存在一个图像变得难以解释的点。
总结
正如我们在开头所提到的,AI现在已经深深融入嵌入式系统领域。然而,这种大众化意味着以前不需要了解AI和ML的设计工程师正面临将AI解决方案实现到其设计中的挑战。
尽管创建ML应用并充分利用有限硬件资源的挑战可能令人望而却步,但这对经验丰富的嵌入式系统设计人员来说并不是一个新挑战。好消息是,工程社区内有丰富的信息(和培训),以及像MPLAB X这样的IDE、MPLAB ML这样的模型构建工具以及各种开源数据集和模型。这种生态系统可帮助不同理解水平的工程师快速完成现在可以在16位甚至8位单片机上实现的AL和ML解决方案。
供稿:电子应用技术
本文链接:http://www.cmcia.cn/content.aspx?url=rew&id=4873
相关新闻
- 2025-04-29意法半导体推出内置边缘AI的超低功耗工业级加速度计
- 2025-04-29AI医疗应用加速 清华人工智能医院揭牌
- 2025-04-232025年全球GenAI手机出货量有望突破4亿部
- 2025-04-23从“数字大圣”到“翻译神器” 科大讯飞用自主创新谱写AI新篇章
- 2025-04-17中科曙光发起行业AI智能体开放生态联盟在京成立
- 2025-04-15宜人智科“智语大模型”正式通过备案 开启AI科技新征程
- 2025-03-31蚂蚁集团使用国产芯片训练AI取得突破

成员中心
- 上海会通自动化科技发展有限公
- 中达电通股份有限公司
- 长春禹衡光学有限公司
- 睿工业
- 广东美的智能科技有限公司
- 高创传动科技开发(深圳)有限
- 南京埃斯顿自动化股份有限公司
- 哈尔滨工业大学
- 深圳市机械行业协会
- 广东省自动化学会
- 广东省机械工程学会
- 华南智能机器人创新研究院
- 深圳市机器人协会
- 富士康科技集团
- 深圳众为兴技术股份有限公司
- 南京诚达运动控制系统有限公司
- 常州精纳电机有限公司
- 杭州之山智控技术有限公司
- 杭州中达电机有限公司
- 杭州日鼎控制技术有限公司
- 杭州米格电机有限公司
- 上海新时达电气股份有限公司
- 上海登奇机电技术有限公司
- 上海三竹机电设备有限公司
- 深圳市艾而特工业自动化设备有
- 深圳市亿维自动化技术有限公司
- 湖南科力尔电机股份有限公司
- 深圳市四方电气技术有限公司
- 武汉迈信电气技术有限公司
- 广东省珠峰电气股份有限公司
- 清能德创电气技术(北京)有限公
- 毕孚自动化设备贸易(上海)有
- 富士电机(中国)有限公司
- 松下电器机电(上海)有限公司
- 路斯特运动控制技术(上海)有
- 西门子(中国)有限公司
- ABB(中国)有限公司
- 施耐德电气(中国)投资有限公
- 丹佛斯(中国)投资有限公司
- 三菱电机自动化(上海)有限公
- 安川電機(中国)有限公司
- 欧姆龙自动化(中国)有限公司
- 山洋电气(上海)贸易有限公司
- 柯马(上海)工程有限公司
- 康耐视
- 埃莫运动控制技术(上海)有限
- 上海安浦鸣志自动化设备有限公
- 诺德(中国)传动设备有限公司
- 利莱森玛电机科技(福州)有限
- 易格斯(上海)拖链系统有限公
- ACS Motion Control(弘柏商贸(
- 苏州钧和伺服科技有限公司
- 北京研华兴业电子科技有限公司
- 台安科技(无锡)有限公司
- 海顿直线电机(常州)有限公司
- 杭州摩恩电机有限公司
- 梅勒电气(武汉)有限公司
- 亚德诺半导体技术有限公司
- 上海挚驱电气有限公司
- 上海鸿康电器有限公司
- 上海开通数控有限公司
- 上海翡叶动力科技有限公司
- 上海维宏电子科技股份有限公司
- 上海弈猫科技有限公司
- 和椿自动化(上海)有限公司
- 光洋电子(无锡)有限公司
- 图尔克(天津)传感器有限公司
- 堡盟电子(上海)有限公司
- 广东西克智能科技有限公司
- 约翰内斯·海德汉博士(中国)
- 宜科(天津)电子有限公司
- 美国邦纳工程国际有限公司
- 库伯勒(北京)自动化设备贸易
- 奥托尼克斯电子(嘉兴)有限公
- 皮尔磁工业自动化(上海)有限
- 易盼软件(上海)有限公司
- 深圳市凯德电线电缆有限公司
- 恒科鑫(深圳)智能科技有限公
- 深圳市英威腾电气股份有限公司
- 深圳威科达科技有限公司
- 深圳市微秒控制技术有限公司
- 深圳易能电气技术股份有限公司
- 深圳市正运动技术有限公司
- 深圳市合信自动化技术有限公司
- 深圳市吉恒达科技有限公司
- 深圳锐特机电有限公司
- 深圳市顾美科技有限公司
- 深圳安纳赫科技有限公司
- 深圳市金宝佳电气有限公司
- 深圳市泰格运控科技有限公司
- 深圳市麦格米特驱动技术有限公
- 深圳市汇川技术股份有限公司
- 深圳市库马克新技术股份有限公
- 深圳市蓝海华腾技术股份有限公
- 深圳市正弦电气股份有限公司
- 深圳市艾威图技术有限公司
- 无锡信捷电气股份有限公司
- 台州市格特电机有限公司
- 天津龙创恒盛实业有限公司
- 武汉华中数控股份有限公司
- 四川零点自动化系统有限公司
- 庸博(厦门)电气技术有限公司
- 北京凯恩帝数控技术有限责任公
- 北京配天技术有限公司
- 欧瑞传动电气股份有限公司
- 航天科技集团公司第九研究院
- 西安微电机研究所
- 兰州电机股份有限公司
- 太仓摩力伺服技术有限公司
- 泰志达(苏州)自控科技有限公
- 无锡创正科技有限公司
- 宁波菲仕电机技术有限公司
- 杭州中科赛思伺服电机有限公司
- 世协电机股份有限公司
- 太仓摩讯伺服电机有限公司
- 浙江禾川科技股份有限公司
- 腾禾精密电机(昆山)有限公司
- 杭州纳智电机有限公司
- 杭州德力西集团有限公司
- 嘉兴德欧电气技术有限公司
- 卧龙电气集团股份有限公司
- 宁波海天驱动有限公司
- 德恩科电机(太仓)有限公司
- 常州展帆电机科技有限公司
- 固高科技(深圳)有限公司
- 广东科动电气技术有限公司
- 深圳市百盛传动有限公司
- 广州赛孚德电气有限公司
- 广州金升阳科技有限公司
- 广东伊莱斯电机有限公司
- 珠海市台金科技有限公司
- 东莞市卓蓝自动化设备有限公司
- 东莞新友智能科技有限公司
- 成都思迪机电技术研究所
- 深圳市英威腾智能控制有限公司
- 深圳锦凌电子股份有限公司
- 深圳市雷赛智能控制股份有限公
- 深圳市雷赛控制技术有限公司
- 横川机器人(深圳)有限公司
- 武汉久同智能科技有限公司
- 深圳市默贝克驱动技术有限公司
- 深圳众城卓越科技有限公司
- 泉州市桑川电气设备有限公司
- 江苏本川智能电路科技股份有限
- 台州市金维达电机有限公司
- 深圳市多维精密机电有限公司
- 上海尚通电子有限公司
- 配天机器人技术有限公司
- 瑞普安华高(无锡)电子科技有
- 深圳市青蓝自动化科技有限公司
- 广东科伺智能股份科技有限公司
- 东莞市成佳电线电缆有限公司
- 深圳市朗宇芯科技有限公司
- 深圳软赢科技有限公司
- 常州市领华科技自动化有限公司
- 杭州众川电机有限公司
- 江苏智马科技有限公司
- 海禾动力科技(天津)有限公司
- 杭州赛亚传动设备有限公司
- 广州富烨自动化科技有限公司
- 日立产机系统(中国)有限公司
- 魏德米勒电联接(上海)有限公
- 东莞市安扬实业有限公司
- CC-Link协会
- 北京精准博达科技有限公司
- 深圳市山龙智控有限公司
- 苏州伟创电气设备技术有限公司
- 上海相石智能科技有限公司
- 上海米菱电子有限公司
- 深圳市智创电机有限公司
- 深圳市杰美康机电有限公司
- 东莞市亚当电子科技有限公司
- 武汉正源高理光学有限公司
- 珠海凯邦电机制造有限公司
- 上海精浦机电有限公司
- 江苏略盛电子科技有限公司
- 深圳市研控自动化科技有限公司
- 上海微泓自动化设备有限公司
- 宁波中大力德智能传动股份有限
- 成都超德创机电设备有限公司
- 深圳市合发齿轮机械有限公司
- 温州汉桥科技有限公司
- 浙江工商职业技术学院智能制造
- 广东派莱特智能系统有限公司
- 上海英威腾工业技术有限公司
- 宁波中控微电子有限公司
- 普爱纳米位移技术(上海)有限
- 赣州诚正电机有限公司
- 三木普利(天津)有限公司上海
- 无锡新华光精机科技有限公司
- 广东宏博电子机械有限公司
- 纽泰克斯电线(潍坊)有限公司
- 杭州微光电子股份有限公司
- 北京和利时电机技术有限公司
- 广东七科电机科技有限公司
- 艾罗德克运动控制技术(上海)
- 大连普传科技股份有限公司
- 托菲传感技术(上海)股份有限
- 杭州中科伺尔沃电机技术有限公
- 苏州轻工电机厂有限公司
- 国讯芯微(苏州)科技有限公司
- 锋桦传动设备(上海)有限公司
- 科比传动技术(上海)有限公司
- 泰科电子(上海)有限公司
- 广东速美达自动化股份有限公司
- 安徽谨铭连接系统有限公司
- 沈机(上海)智能系统研发设计
- 宁波谷雷姆电子有限公司
- 深圳市人通智能科技有限公司
- 伦茨(上海)传动系统有限公司
- 连云港杰瑞电子有限公司
- 欧德神思软件系统(北京)有限
- 河源职业技术学院
- 凌华科技(中国)有限公司
- 浙江锐鹰传感技术有限公司
- 厦门唯恩电气有限公司
- 深圳市高川自动化技术有限公司
- 北一半导体科技(广东)有限公
- 深圳市步科电气有限公司
- 东莞市凯福电子科技有限公司
- 杭州海拓电子有限公司
- 乐星电气(无锡)有限公司
- 上海奥深精浦科技有限公司
- 崧智智能科技有限公司
- 珠海运控电机有限公司
- 常州拓自达恰依纳电线有限公司
- 浙江省诸暨市精益机电制造有限
- 深圳市多贺电气有限公司
- 上海赢双电机科技股份有限公司
- 日冲商业(昆山)有限公司
- 深圳市卓航自动化设备有限公司
- 苏州市凌臣采集计算机有限公司
- 南京芯驰半导体科技有限公司
- 福建睿能科技股份有限公司
- 深圳市如本科技有限公司
- 常州市常华电机股份有限公司
- 宁波众诺电子科技有限公司
- 联诚科技集团股份有限公司
- 山东中科伺易智能技术有限公司
- 广东奥普特科技股份有限公司
- 上海艾研机电控制系统有限公司
- 长广溪智能制造(无锡)有限公司
- 句容市百欧电子有限公司
- 深圳市康士达科技有限公司
- 深圳舜昌自动化控制技术有限公
- 昕芙旎雅商贸(上海)有限公司
- 北京科迪通达科技有限公司
- 成都中天自动化控制技术有限公
- 深圳市恒昱控制技术有限公司
- 众程技术(常州)有限公司
- 深圳市好上好信息科技股份有限
- 常州洛源智能科技有限公司
- 昆山艾尼维尔电子有限公司
- 深圳市迪维迅机电技术有限公司
- 尼得科控制技术公司
- 传周半导体科技(上海)有限公
- 纳博特南京科技有限公司
- 苏州海特自动化设备有限公司
- 深圳市华成工业控制股份有限公
- 宁波招宝磁业有限公司
- 南京菲尼克斯电气有限公司
- 长裕电缆科技(上海)有限公司
- 台州鑫宇海智能科技股份有限公
- 宁波银禧机械科技有限公司
- 江苏睿芯源科技有限公司
- 威图电子机械技术(上海)有限公
- 玛格电子技术(武汉)有限公司
- 福尔哈贝传动技术(太仓)有限公
- 武汉华大新型电机科技股份有限
- 永宏电机股份有限公司
- 浙江顶峰技术服务有限公司
- 上海先楫半导体科技有限公司
- 苏州阿普奇物联网科技有限公司
- 德缆(上海)电线电缆有限公司
- 广东英瑞沃电气科技有限公司
- 南京实点电子科技有限公司
- 广州丰盈机电科技有限公司
- 深圳市百亨电子有限公司
- 苏州德胜亨电缆科技有限公司
- 深圳三铭电气有限公司
- 嘉兴松州工业科技有限公司
- 苏州途亿通科技有限公司
- 上海数恩电气科技有限公司
- 昆山深裕泽电子有限公司
- 广东百能堡科技有限公司
- 深圳市嘉扬科技有限公司
- 宁波高胜电子有限公司
- 台州百格拉机电有限公司
- 上海弓望电子科技有限公司