AI大模型疯长,存储扛住了吗?
2024/4/16 13:55:14 标签:中国传动网
导语:过去一年半,AI大模型标志性的应用相继出现,从ChatGPT到Sora一次次刷新人们的认知。震撼的背后,是大模型参数指数级的增长。
AI大模型正在倒逼数字基础设施产业加速升级。
过去一年半,AI大模型标志性的应用相继出现,从ChatGPT到Sora一次次刷新人们的认知。震撼的背后,是大模型参数指数级的增长。
这种数据暴涨的压力,快速传导到了大模型的底层基础设施。作为支撑大模型的底座“三大件”——算力、网络、存储,都在快速的迭代。
算力方面,英伟达用了两年的时间就将GPU从H100升级到了H200,让模型的训练性能提升了5倍。
网络方面,从之前的25G升级到现在的200G,网络带宽提升了6倍。随着RDMA大规模的应用,网络延迟也降低了60%。
存储方面,华为、阿里云、百度智能云、腾讯云等大厂,都相继推出了面向AI大模型的存储方案。
那么作为基础设施的三大件之一的存储,在AI大模型的场景下到底发生了哪些变化?又有哪些新的技术挑战?
AI大模型带来的 存储挑战
算力、算法、数据,在发展AI过程中的重要性早已为人所熟知,但是作为数据的承载,存储却往往被忽略。
在训练AI大模型的过程中,需要大量数据的交换,存储作为数据的基础硬件,并非仅仅只是简单地记录数据,而是深刻参与到了数据归集、流转、利用等大模型训练的全流程。
如果存储性能不强,那么可能需要耗费大量时间才能完成一次训练,这就会严重制约大模型的发展迭代。
事实上,不少企业在开发及实施大模型应用过程中,已经开始意识到存储系统所面临的巨大挑战。
从AI大模型的研发生产流程看,可分为数据采集、清洗、训练和应用四个阶段,各阶段都对存储提出了新的要求,比如:在数据采集环节,由于原始训练数据规模海量,且来源多样,企业希望能够有一个大容量、低成本、高可靠的数据存储底座。
在数据清洗阶段,网络上收集的原始数据是不能直接用于AI模型训练的,需要将多格式、多协议的数据进行清洗、去重、过滤、加工,行业内称其为“数据预处理”。
与传统单模态小模型训练相比,多模态大模型所需的训练数据量是其1000倍以上,一个典型的百TB级大模型数据集,预处理时长超过10天,占比AI数据挖掘全流程的30%。
同时,数据预处理伴随高并发处理,对算力消耗巨大。这就要求存储能够提供多协议、高性能的支持,用标准文件的方式完成海量数据的清洗和转换,以缩短数据预处理的时长。
在模型训练环节,通常会出现训练集加载慢、易中断、数据恢复时间长等问题。相较于传统学习模型,大模型训练参数、训练数据集指数级增加,如何实现海量小文件数据集快速加载,降低 GPU等待时间是关键。
目前,主流预训练模型已经有千亿级参数,而频繁的参数调优、网络不稳定、服务器故障等多种因素带来训练过程不稳定,易中断返工,需要Checkpoints机制来确保训练回退到还原点,而不是初始点。
当前,由于Checkpoints需要天级的恢复时长,导致大模型整体训练周期陡增,而面对单次超大的数据量和未来小时级的频度要求,需要认真考虑如何降低Checkpoints恢复时长。
因此,存储能否快速地读写checkpoint(检查点)文件,也成了能否高效利用算力资源、提高训练效率的关键。
在应用阶段,存储需要提供比较丰富的数据审核的能力,来满足鉴黄鉴暴安全合规的诉求,保证大模型生成的内容是合法、合规的方式去使用。
总的来说,AI大模型训练的效率要达到极致,减少不必要的浪费,必须在数据上下功夫。准确地说,必须要在数据存储技术上进行创新。
AI倒逼存储技术创新
根据投资机构ARK Invest预算,到2030年,产业有望训练出比GPT-3多57倍参数、多720倍Token的AI模型,成本将从今天的170亿美元降至60万美元。随着计算价格降低,数据将成为大模型生产的主要限制因素。
面对数据桎梏问题,不少企业已经开始进行前瞻性布局。
比如百川智能、智谱、元象等大模型企业,都已采用腾讯云AIGC云存储解决方案来提升效率。数据显示,腾讯云AIGC云存储解决方案,可将大模型的数据清洗和训练效率均提升一倍,需要的时间缩短一半。科大讯飞、中科院等大模型企业和机构,则采用了华为AI存储相关产品。
数据显示,华为OceanStor A310可实现从数据归集、预处理到模型训练、推理应用的AI全流程海量数据管理,简化数据归集流程,减少数据搬移,预处理效率提升30%。目前,国内各大厂商也相继发布了面向AI大模型场景的存储方案。
2023年7月,华为发布两款面向AI大模型的存储产品——OceanStor A310深度学习数据湖存储和FusionCube A3000训/推超融合一体机。
2023年11月云栖大会上,阿里云推出一系列针对大模型场景的存储产品创新,用AI技术赋能AI业务,帮助用户更轻松地管理大规模多模态数据集,提高模型训练、推理的效率和准确性。
2023年12月,百度智能云发布了“百度沧海·存储”统一技术底座,同时面向数据湖存储和AI存储能力进行了全面增强。
2024年4月,腾讯云宣布云存储解决方案面向AIGC场景全面升级,针对AI大模型数据采集清洗、训练、推理、数据治理全流程提供全面、高效的云存储支持。
综合各大厂商的存储技术创新,可以发现技术方向较为统一,都是基于AI大模型生产研发的全流程,对存储产品进行有针对性的性能优化。
以腾讯云为例,在数据采集与清洗环节,首先需要存储能够支持多协议、高性能、大带宽。因此,腾讯云对象存储COS能够支持单集群管理百 EB 级别存储规模,提供便捷、高效的数据公网接入能力,并支持多种协议,充分支持大模型PB级别的海量数据采集。同时,数据清洗时,大数据引擎需要快速地读取并过滤出有效数据。
腾讯云对象存储COS通过自研数据加速器GooseFS提升数据访问性能,实现了高达数TBps的读取带宽,支撑计算高速运行,大大提升数据清洗效率。在模型训练环节,通常需要每2-4小时保存一次训练成果,以便能在GPU故障时时能回滚。腾讯云自主研发并行文件存储CFS Turbo ,面向AIGC训练场景的进行了专门优化,每秒总读写吞吐达到TiB/s级别,每秒元数据性能高达百万OPS,均为业界第一。3TB checkpoint 写入时间从10分钟,缩短至10秒内,使大模型训练效率大幅提升。大模型推理场景对数据安全与可追溯性提出更高要求。
腾讯云数据万象CI为此提供图片隐式水印、AIGC内容审核、智能数据检索MetaInsight等能力,为数据生产从“用户输入——预处理——内容审核——版权保护——安全分发——信息检索”业务全流程提供有力支撑,优化AIGC内容生产与管理模式,顺应监管导向,拓宽存储边界。
同时,随着训练数据和推理数据的增长,需要提供低成本的存储能力,减少存储开销。腾讯云对象存储服务提供了高达12个9的数据持久性和99.995%的数据可用性,能够为业务提供持续可用的存储服务。总的来说,随着AI大模型的推进,数据存储出现了新的趋势。市场渴望更高性能、大容量、低成本的存储产品,并加速大模型各个环节的融合和效率提升。而各大厂商也在通过技术创新不断满足大模型各环节的需求,为企业实施大模型降低门槛。在AI大模型的倒逼下,存储创新已在路上。
供稿:维科网
本文链接:http://www.cmcia.cn/content.aspx?url=rew&id=4074
相关新闻
- 2025-05-07AI芯片“功耗悬崖”:大模型催生的冷却技术革命
- 2025-04-29意法半导体推出内置边缘AI的超低功耗工业级加速度计
- 2025-04-29AI医疗应用加速 清华人工智能医院揭牌
- 2025-04-232025年全球GenAI手机出货量有望突破4亿部
- 2025-04-23从“数字大圣”到“翻译神器” 科大讯飞用自主创新谱写AI新篇章
- 2025-04-17中科曙光发起行业AI智能体开放生态联盟在京成立
- 2025-04-15宜人智科“智语大模型”正式通过备案 开启AI科技新征程

成员中心
- 上海会通自动化科技发展有限公
- 中达电通股份有限公司
- 长春禹衡光学有限公司
- 睿工业
- 广东美的智能科技有限公司
- 高创传动科技开发(深圳)有限
- 南京埃斯顿自动化股份有限公司
- 哈尔滨工业大学
- 深圳市机械行业协会
- 广东省自动化学会
- 广东省机械工程学会
- 华南智能机器人创新研究院
- 深圳市机器人协会
- 富士康科技集团
- 深圳众为兴技术股份有限公司
- 南京诚达运动控制系统有限公司
- 常州精纳电机有限公司
- 杭州之山智控技术有限公司
- 杭州中达电机有限公司
- 杭州日鼎控制技术有限公司
- 杭州米格电机有限公司
- 上海新时达电气股份有限公司
- 上海登奇机电技术有限公司
- 上海三竹机电设备有限公司
- 深圳市艾而特工业自动化设备有
- 深圳市亿维自动化技术有限公司
- 湖南科力尔电机股份有限公司
- 深圳市四方电气技术有限公司
- 武汉迈信电气技术有限公司
- 广东省珠峰电气股份有限公司
- 清能德创电气技术(北京)有限公
- 毕孚自动化设备贸易(上海)有
- 富士电机(中国)有限公司
- 松下电器机电(上海)有限公司
- 路斯特运动控制技术(上海)有
- 西门子(中国)有限公司
- ABB(中国)有限公司
- 施耐德电气(中国)投资有限公
- 丹佛斯(中国)投资有限公司
- 三菱电机自动化(上海)有限公
- 安川電機(中国)有限公司
- 欧姆龙自动化(中国)有限公司
- 山洋电气(上海)贸易有限公司
- 柯马(上海)工程有限公司
- 康耐视
- 埃莫运动控制技术(上海)有限
- 上海安浦鸣志自动化设备有限公
- 诺德(中国)传动设备有限公司
- 利莱森玛电机科技(福州)有限
- 易格斯(上海)拖链系统有限公
- ACS Motion Control(弘柏商贸(
- 苏州钧和伺服科技有限公司
- 北京研华兴业电子科技有限公司
- 台安科技(无锡)有限公司
- 海顿直线电机(常州)有限公司
- 杭州摩恩电机有限公司
- 梅勒电气(武汉)有限公司
- 亚德诺半导体技术有限公司
- 上海挚驱电气有限公司
- 上海鸿康电器有限公司
- 上海开通数控有限公司
- 上海翡叶动力科技有限公司
- 上海维宏电子科技股份有限公司
- 上海弈猫科技有限公司
- 和椿自动化(上海)有限公司
- 光洋电子(无锡)有限公司
- 图尔克(天津)传感器有限公司
- 堡盟电子(上海)有限公司
- 广东西克智能科技有限公司
- 约翰内斯·海德汉博士(中国)
- 宜科(天津)电子有限公司
- 美国邦纳工程国际有限公司
- 库伯勒(北京)自动化设备贸易
- 奥托尼克斯电子(嘉兴)有限公
- 皮尔磁工业自动化(上海)有限
- 易盼软件(上海)有限公司
- 深圳市凯德电线电缆有限公司
- 恒科鑫(深圳)智能科技有限公
- 深圳市英威腾电气股份有限公司
- 深圳威科达科技有限公司
- 深圳市微秒控制技术有限公司
- 深圳易能电气技术股份有限公司
- 深圳市正运动技术有限公司
- 深圳市合信自动化技术有限公司
- 深圳市吉恒达科技有限公司
- 深圳锐特机电有限公司
- 深圳市顾美科技有限公司
- 深圳安纳赫科技有限公司
- 深圳市金宝佳电气有限公司
- 深圳市泰格运控科技有限公司
- 深圳市麦格米特驱动技术有限公
- 深圳市汇川技术股份有限公司
- 深圳市库马克新技术股份有限公
- 深圳市蓝海华腾技术股份有限公
- 深圳市正弦电气股份有限公司
- 深圳市艾威图技术有限公司
- 无锡信捷电气股份有限公司
- 台州市格特电机有限公司
- 天津龙创恒盛实业有限公司
- 武汉华中数控股份有限公司
- 四川零点自动化系统有限公司
- 庸博(厦门)电气技术有限公司
- 北京凯恩帝数控技术有限责任公
- 北京配天技术有限公司
- 欧瑞传动电气股份有限公司
- 航天科技集团公司第九研究院
- 西安微电机研究所
- 兰州电机股份有限公司
- 太仓摩力伺服技术有限公司
- 泰志达(苏州)自控科技有限公
- 无锡创正科技有限公司
- 宁波菲仕电机技术有限公司
- 杭州中科赛思伺服电机有限公司
- 世协电机股份有限公司
- 太仓摩讯伺服电机有限公司
- 浙江禾川科技股份有限公司
- 腾禾精密电机(昆山)有限公司
- 杭州纳智电机有限公司
- 杭州德力西集团有限公司
- 嘉兴德欧电气技术有限公司
- 卧龙电气集团股份有限公司
- 宁波海天驱动有限公司
- 德恩科电机(太仓)有限公司
- 常州展帆电机科技有限公司
- 固高科技(深圳)有限公司
- 广东科动电气技术有限公司
- 深圳市百盛传动有限公司
- 广州赛孚德电气有限公司
- 广州金升阳科技有限公司
- 广东伊莱斯电机有限公司
- 珠海市台金科技有限公司
- 东莞市卓蓝自动化设备有限公司
- 东莞新友智能科技有限公司
- 成都思迪机电技术研究所
- 深圳市英威腾智能控制有限公司
- 深圳锦凌电子股份有限公司
- 深圳市雷赛智能控制股份有限公
- 深圳市雷赛控制技术有限公司
- 横川机器人(深圳)有限公司
- 武汉久同智能科技有限公司
- 深圳市默贝克驱动技术有限公司
- 深圳众城卓越科技有限公司
- 泉州市桑川电气设备有限公司
- 江苏本川智能电路科技股份有限
- 台州市金维达电机有限公司
- 深圳市多维精密机电有限公司
- 上海尚通电子有限公司
- 配天机器人技术有限公司
- 瑞普安华高(无锡)电子科技有
- 深圳市青蓝自动化科技有限公司
- 广东科伺智能股份科技有限公司
- 东莞市成佳电线电缆有限公司
- 深圳市朗宇芯科技有限公司
- 深圳软赢科技有限公司
- 常州市领华科技自动化有限公司
- 杭州众川电机有限公司
- 江苏智马科技有限公司
- 海禾动力科技(天津)有限公司
- 杭州赛亚传动设备有限公司
- 广州富烨自动化科技有限公司
- 日立产机系统(中国)有限公司
- 魏德米勒电联接(上海)有限公
- 东莞市安扬实业有限公司
- CC-Link协会
- 北京精准博达科技有限公司
- 深圳市山龙智控有限公司
- 苏州伟创电气设备技术有限公司
- 上海相石智能科技有限公司
- 上海米菱电子有限公司
- 深圳市智创电机有限公司
- 深圳市杰美康机电有限公司
- 东莞市亚当电子科技有限公司
- 武汉正源高理光学有限公司
- 珠海凯邦电机制造有限公司
- 上海精浦机电有限公司
- 江苏略盛电子科技有限公司
- 深圳市研控自动化科技有限公司
- 上海微泓自动化设备有限公司
- 宁波中大力德智能传动股份有限
- 成都超德创机电设备有限公司
- 深圳市合发齿轮机械有限公司
- 温州汉桥科技有限公司
- 浙江工商职业技术学院智能制造
- 广东派莱特智能系统有限公司
- 上海英威腾工业技术有限公司
- 宁波中控微电子有限公司
- 普爱纳米位移技术(上海)有限
- 赣州诚正电机有限公司
- 三木普利(天津)有限公司上海
- 无锡新华光精机科技有限公司
- 广东宏博电子机械有限公司
- 纽泰克斯电线(潍坊)有限公司
- 杭州微光电子股份有限公司
- 北京和利时电机技术有限公司
- 广东七科电机科技有限公司
- 艾罗德克运动控制技术(上海)
- 大连普传科技股份有限公司
- 托菲传感技术(上海)股份有限
- 杭州中科伺尔沃电机技术有限公
- 苏州轻工电机厂有限公司
- 国讯芯微(苏州)科技有限公司
- 锋桦传动设备(上海)有限公司
- 科比传动技术(上海)有限公司
- 泰科电子(上海)有限公司
- 广东速美达自动化股份有限公司
- 安徽谨铭连接系统有限公司
- 沈机(上海)智能系统研发设计
- 宁波谷雷姆电子有限公司
- 深圳市人通智能科技有限公司
- 伦茨(上海)传动系统有限公司
- 连云港杰瑞电子有限公司
- 欧德神思软件系统(北京)有限
- 河源职业技术学院
- 凌华科技(中国)有限公司
- 浙江锐鹰传感技术有限公司
- 厦门唯恩电气有限公司
- 深圳市高川自动化技术有限公司
- 北一半导体科技(广东)有限公
- 深圳市步科电气有限公司
- 东莞市凯福电子科技有限公司
- 杭州海拓电子有限公司
- 乐星电气(无锡)有限公司
- 上海奥深精浦科技有限公司
- 崧智智能科技有限公司
- 珠海运控电机有限公司
- 常州拓自达恰依纳电线有限公司
- 浙江省诸暨市精益机电制造有限
- 深圳市多贺电气有限公司
- 上海赢双电机科技股份有限公司
- 日冲商业(昆山)有限公司
- 深圳市卓航自动化设备有限公司
- 苏州市凌臣采集计算机有限公司
- 南京芯驰半导体科技有限公司
- 福建睿能科技股份有限公司
- 深圳市如本科技有限公司
- 常州市常华电机股份有限公司
- 宁波众诺电子科技有限公司
- 联诚科技集团股份有限公司
- 山东中科伺易智能技术有限公司
- 广东奥普特科技股份有限公司
- 上海艾研机电控制系统有限公司
- 长广溪智能制造(无锡)有限公司
- 句容市百欧电子有限公司
- 深圳市康士达科技有限公司
- 深圳舜昌自动化控制技术有限公
- 昕芙旎雅商贸(上海)有限公司
- 北京科迪通达科技有限公司
- 成都中天自动化控制技术有限公
- 深圳市恒昱控制技术有限公司
- 众程技术(常州)有限公司
- 深圳市好上好信息科技股份有限
- 常州洛源智能科技有限公司
- 昆山艾尼维尔电子有限公司
- 深圳市迪维迅机电技术有限公司
- 尼得科控制技术公司
- 传周半导体科技(上海)有限公
- 纳博特南京科技有限公司
- 苏州海特自动化设备有限公司
- 深圳市华成工业控制股份有限公
- 宁波招宝磁业有限公司
- 南京菲尼克斯电气有限公司
- 长裕电缆科技(上海)有限公司
- 台州鑫宇海智能科技股份有限公
- 宁波银禧机械科技有限公司
- 江苏睿芯源科技有限公司
- 威图电子机械技术(上海)有限公
- 玛格电子技术(武汉)有限公司
- 福尔哈贝传动技术(太仓)有限公
- 武汉华大新型电机科技股份有限
- 永宏电机股份有限公司
- 浙江顶峰技术服务有限公司
- 上海先楫半导体科技有限公司
- 苏州阿普奇物联网科技有限公司
- 德缆(上海)电线电缆有限公司
- 广东英瑞沃电气科技有限公司
- 南京实点电子科技有限公司
- 广州丰盈机电科技有限公司
- 深圳市百亨电子有限公司
- 苏州德胜亨电缆科技有限公司
- 深圳三铭电气有限公司
- 嘉兴松州工业科技有限公司
- 苏州途亿通科技有限公司
- 上海数恩电气科技有限公司
- 昆山深裕泽电子有限公司
- 广东百能堡科技有限公司
- 深圳市嘉扬科技有限公司
- 宁波高胜电子有限公司
- 台州百格拉机电有限公司
- 上海弓望电子科技有限公司