变频器控制算法的华山论剑
2018/10/11 13:45:47 标签:中国传动网
日前一篇关于 PLC 编程方式的气宗与剑宗之争的推文火爆朋友圈,让大家对业内自动化产品的关注度瞬间提高 2 个百分点。今天我们就来说说变频器控制算法的气宗与剑宗。
2017年中国低压变频器主要供应商营业额

DataSource:MIR | 睿工业
纵观国内低压变频器市场,行业第一梯队由 ABB 与 Siemens 及汇川三家组成,它们的年销售额均在二十亿 RMB 左右,合计市场份额 30% 以上, 尤其是国产品牌汇川近几年持续专注于专机市场的开发与拓展,增长势头迅猛,成为紧追 ABB、Siemens 的变频器厂商,并且很有可能会在两三年后成为国内低压变频器的第一品牌;台湾品牌台达及进口品牌 Schneider、Yaskawa、Danfoss(Vacon)同属第二梯队,年销售额在十亿 RMB 左右;而其它年销售额在数亿 RMB 的品牌则属于第三梯队。

PicSource:Wikipedia
变频器品牌沉沉浮浮,你方唱罢我登场,但是其背后的控制理论却一直未有太多的变化,除了电流和磁场不参与控制、类似开环的 v/f 控制方式以外,目前主要有两种控制算法:
矢量控制:
Vector Control = VC
直接转矩控制:
Direct Torque Control = DTC

PickSource:wikimedia.org
所谓矢量控制,就是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,同时控制两个分量的幅值和相位,即控制定子电流矢量,因此这种控制方式被称为矢量控制。

PicSource:Convergence Training
在矢量控制理论出现以前,生产工艺中的速度调节主要是通过直流电机的调速来完成的。直流电动机回路主要由励磁部分和电枢部分组成,励磁电路负责磁场的建立,电枢部分负责为转子线圈提供电源电压;励磁及电枢有两个相对独立的控制回路,可以分别进行控制和调节。
根据直流电机转速计算公式:
n =( U - RI )/ Ce φ;
U:为电枢电压;
R:为电枢回路电阻;
I:为电枢电流;
φ:为电动机气隙主磁通;
Ce:为常数,其与电动机结构相关。
所以,直流电机的转速调节,是可以通过调节电枢电阻 R、或者电枢电压 U 来实现的。

PicSource:Wikipedia
而反观交流电动机,定子部分同时承担了直流电机电枢回路及励磁回路的功能。由于输入的电源特性,导致交流电机的磁场为交变的耦合磁场,其控制是不能用简单的电压/电流来进行调节的。
这个状况在交流电机矢量控制理论出现后发生了改变。

PicSource:Blaschke's 1971 US patent application
上世纪 70 年代 Siemens 工程师 F.Blaschke 首先提出了异步电机矢量控制理论,用来解决交流电机的转矩控制问题。上图所展示的即为其当时申请专利时所绘制的系统框图真迹。矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。

PicSource:Wikipedia
具体来说,就是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两个分量的幅值和相位,即控制定子电流矢量。因此,我们将这样的电机控制方式称为“矢量控制”。而在矢量控制方式中,又有基于转差频率的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式...等。这样,借助矢量控制技术,我们就可以将一台三相异步电机等效为直流电机来控制,从而获得与直流调速系统同样的静、动态性能。

PicSource:FR A800 | Mitsubishi Electric
使用矢量控制方式的通用变频器驱动异步电动机,不仅能够让其在调速范围上与直流电动机相匹配,而且还可以对其输出转矩进行灵活控制。
由于矢量控制方式所依据的是被控异步电动机的物理特性,因此大部分通用变频器在使用时往往都要求准确地输入异步电动机的规格参数,有时还需要匹配相应的速度传感器和编码器。

PicSource:siemens.com/press | sinamics
目前新的通用型矢量控制变频器都已经具备了异步电动机参数自动检测、自动辨识、自适应功能。带有这种功能的通用变频器,在驱动异步电动机进行正常运转之前,能够自动辨识异步电动机的特性指标,并相应的调整控制算法中的有关参数,从而对普通的异步电动机进行有效的矢量控制。这在很大程度上帮助用户简化了产品的配置和调试工作。

PicSource:Wikipedia
1985 年,德国学者 Depenbrock 教授提出直接转矩控制。其思路是把电机和逆变器看成一个整体,采用空间电压矢量分析方法在定子坐标系进行磁通、转矩计算,通过跟踪型 PWM 逆变器的开关状态直接控制转矩,无需对定子电流进行解耦,免去矢量变换的复杂计算,极大的简化了系统的控制结构。

PicSource:researchgate.net
直接转矩控制技术,是利用空间矢量、定子磁场定向的分析方法,直接在定子坐标系下分析异步电动机的数学模型,计算与控制异步电动机的磁链和转矩,采用离散的两点式调节器(Band - Band 控制),对转矩的检测值与给定值进行比较,将转矩波动限制在一定的容差范围内,容差的大小由频率调节器来控制,并产生 PWM 脉宽调制信号,直接对逆变器的开关状态进行控制,以获得高动态性能的转矩输出。它的控制效果不取决于异步电动机的数学模型是否能够简化,而是取决于转矩的实际状况;它不需要将交流电动机与直流电动机作比较、等效、转化,即不需要模仿直流电动机的控制方法。

PicSource:ABB
由于省掉了矢量变换方式的坐标变换与计算、无需为了解耦去简化异步电动机的数学模型、没有了通常的 PWM 脉宽调制信号发生器,因此,直接转矩控制的系统结构相对简单、控制信号处理的物理概念明确、系统的转矩响应迅速且无超调,是一种具有高静、动态性能的交流调速控制方式。

PicSource:ABB | ACS800
广义上说,直接转矩控制也属于矢量控制的一种,而我们上面所说的矢量控制,实际上是矢量控制中的定向磁场控制,即 Field Oriented Control = FOC。然而,尽管都可以被称为“矢量控制”,但这两种算法在控制原理上的差异还是非常大的,几乎可以算得上是井水不犯河水。另外,从习惯上看,我们日常提到矢量控制时,更多的也是在指 FOC,而非直接转矩控制 DTC,也是为了能够有效的将这二者区分开来。

PicSource:TB Wood's
有关矢量控制与直接转矩控制之间的差异,个人觉得,其实也是可以用华山派的气宗与剑宗来进行对比演绎的:
华山派气宗讲究的是内功心法,先从基本功开始,最终以气御剑;矢量控制从电机自身出发,对其内在进行深入的剖析和解构,最终达到控制目的。从这点来看,矢量控制和气宗确实有的一拼。
而剑宗讲究招式凌厉,变化繁复;内功心法不重要,只要招式妙,一样把你打趴下。直接转矩控制以控制转矩为目标,一切以转矩为核心,就如剑宗,敌静我止,敌动我先动,天下武功唯快不破,最终达到控制的目的。

PicSource:The Straits Times
通过对矢量控制和直接转矩控制两种算法的武侠演绎,可以看到,虽然二者的思路不同,但是最终的目的却是一致的,就是准确的对电机的速度/转矩进行控制。同时,由于二者内在的控制核心不一致,造成了最终在控制表现上的差异:

InfoSource:Wikipedia
矢量控制与直接转矩控制,二者各自都有其优势与劣势,我们并不能仅从上述演绎就简单的研判二者谁更好,更强。在不同的应用场合中,不同的控制算法产生的结果也是不同的。比如在一些对转矩响应要求特别高的应用领域,直接转矩控制就比较适合;但是在一些对速度稳定性要求较高的场合,矢量控制的表现就要优于直接转矩控制。
我们期待,在将来会有一种算法,能够融合二者的优点,弥补各自的缺点,让变频器更好更快地为人民服务。
原稿:Mute
图文:麥總
参考文献:Siemens | DTC 与矢量控制
供稿:智造商
本文链接:http://www.cmcia.cn/content.aspx?url=rew&id=828
相关新闻
- 2018-10-11变频器控制算法的华山论剑

成员中心
- 上海会通自动化科技发展有限公
- 中达电通股份有限公司
- 长春禹衡光学有限公司
- 睿工业
- 广东美的智能科技有限公司
- 高创传动科技开发(深圳)有限
- 南京埃斯顿自动化股份有限公司
- 哈尔滨工业大学
- 深圳市机械行业协会
- 广东省自动化学会
- 广东省机械工程学会
- 华南智能机器人创新研究院
- 深圳市机器人协会
- 富士康科技集团
- 深圳众为兴技术股份有限公司
- 南京诚达运动控制系统有限公司
- 常州精纳电机有限公司
- 杭州之山智控技术有限公司
- 杭州中达电机有限公司
- 杭州日鼎控制技术有限公司
- 杭州米格电机有限公司
- 上海新时达电气股份有限公司
- 上海登奇机电技术有限公司
- 上海三竹机电设备有限公司
- 深圳市艾而特工业自动化设备有
- 深圳市亿维自动化技术有限公司
- 湖南科力尔电机股份有限公司
- 深圳市四方电气技术有限公司
- 武汉迈信电气技术有限公司
- 广东省珠峰电气股份有限公司
- 清能德创电气技术(北京)有限公
- 毕孚自动化设备贸易(上海)有
- 富士电机(中国)有限公司
- 松下电器机电(上海)有限公司
- 路斯特运动控制技术(上海)有
- 西门子(中国)有限公司
- ABB(中国)有限公司
- 施耐德电气(中国)投资有限公
- 丹佛斯(中国)投资有限公司
- 三菱电机自动化(上海)有限公
- 安川電機(中国)有限公司
- 欧姆龙自动化(中国)有限公司
- 山洋电气(上海)贸易有限公司
- 柯马(上海)工程有限公司
- 康耐视
- 埃莫运动控制技术(上海)有限
- 上海安浦鸣志自动化设备有限公
- 诺德(中国)传动设备有限公司
- 利莱森玛电机科技(福州)有限
- 易格斯(上海)拖链系统有限公
- ACS Motion Control(弘柏商贸(
- 苏州钧和伺服科技有限公司
- 北京研华兴业电子科技有限公司
- 台安科技(无锡)有限公司
- 海顿直线电机(常州)有限公司
- 杭州摩恩电机有限公司
- 梅勒电气(武汉)有限公司
- 亚德诺半导体技术有限公司
- 上海挚驱电气有限公司
- 上海鸿康电器有限公司
- 上海开通数控有限公司
- 上海翡叶动力科技有限公司
- 上海维宏电子科技股份有限公司
- 上海弈猫科技有限公司
- 和椿自动化(上海)有限公司
- 光洋电子(无锡)有限公司
- 图尔克(天津)传感器有限公司
- 堡盟电子(上海)有限公司
- 广东西克智能科技有限公司
- 约翰内斯·海德汉博士(中国)
- 宜科(天津)电子有限公司
- 美国邦纳工程国际有限公司
- 库伯勒(北京)自动化设备贸易
- 奥托尼克斯电子(嘉兴)有限公
- 皮尔磁工业自动化(上海)有限
- 易盼软件(上海)有限公司
- 深圳市凯德电线电缆有限公司
- 恒科鑫(深圳)智能科技有限公
- 深圳市英威腾电气股份有限公司
- 深圳威科达科技有限公司
- 深圳市微秒控制技术有限公司
- 深圳易能电气技术股份有限公司
- 深圳市正运动技术有限公司
- 深圳市合信自动化技术有限公司
- 深圳市吉恒达科技有限公司
- 深圳锐特机电有限公司
- 深圳市顾美科技有限公司
- 深圳安纳赫科技有限公司
- 深圳市金宝佳电气有限公司
- 深圳市泰格运控科技有限公司
- 深圳市麦格米特驱动技术有限公
- 深圳市汇川技术股份有限公司
- 深圳市库马克新技术股份有限公
- 深圳市蓝海华腾技术股份有限公
- 深圳市正弦电气股份有限公司
- 深圳市艾威图技术有限公司
- 无锡信捷电气股份有限公司
- 台州市格特电机有限公司
- 天津龙创恒盛实业有限公司
- 武汉华中数控股份有限公司
- 四川零点自动化系统有限公司
- 庸博(厦门)电气技术有限公司
- 北京凯恩帝数控技术有限责任公
- 北京配天技术有限公司
- 欧瑞传动电气股份有限公司
- 航天科技集团公司第九研究院
- 西安微电机研究所
- 兰州电机股份有限公司
- 太仓摩力伺服技术有限公司
- 泰志达(苏州)自控科技有限公
- 无锡创正科技有限公司
- 宁波菲仕电机技术有限公司
- 杭州中科赛思伺服电机有限公司
- 世协电机股份有限公司
- 太仓摩讯伺服电机有限公司
- 浙江禾川科技股份有限公司
- 腾禾精密电机(昆山)有限公司
- 杭州纳智电机有限公司
- 杭州德力西集团有限公司
- 嘉兴德欧电气技术有限公司
- 卧龙电气集团股份有限公司
- 宁波海天驱动有限公司
- 德恩科电机(太仓)有限公司
- 常州展帆电机科技有限公司
- 固高科技(深圳)有限公司
- 广东科动电气技术有限公司
- 深圳市百盛传动有限公司
- 广州赛孚德电气有限公司
- 广州金升阳科技有限公司
- 广东伊莱斯电机有限公司
- 珠海市台金科技有限公司
- 东莞市卓蓝自动化设备有限公司
- 东莞新友智能科技有限公司
- 成都思迪机电技术研究所
- 深圳市英威腾智能控制有限公司
- 深圳锦凌电子股份有限公司
- 深圳市雷赛智能控制股份有限公
- 深圳市雷赛控制技术有限公司
- 横川机器人(深圳)有限公司
- 武汉久同智能科技有限公司
- 深圳市默贝克驱动技术有限公司
- 深圳众城卓越科技有限公司
- 泉州市桑川电气设备有限公司
- 江苏本川智能电路科技股份有限
- 台州市金维达电机有限公司
- 深圳市多维精密机电有限公司
- 上海尚通电子有限公司
- 配天机器人技术有限公司
- 瑞普安华高(无锡)电子科技有
- 深圳市青蓝自动化科技有限公司
- 广东科伺智能股份科技有限公司
- 东莞市成佳电线电缆有限公司
- 深圳市朗宇芯科技有限公司
- 深圳软赢科技有限公司
- 常州市领华科技自动化有限公司
- 杭州众川电机有限公司
- 江苏智马科技有限公司
- 海禾动力科技(天津)有限公司
- 杭州赛亚传动设备有限公司
- 广州富烨自动化科技有限公司
- 日立产机系统(中国)有限公司
- 魏德米勒电联接(上海)有限公
- 东莞市安扬实业有限公司
- CC-Link协会
- 北京精准博达科技有限公司
- 深圳市山龙智控有限公司
- 苏州伟创电气设备技术有限公司
- 上海相石智能科技有限公司
- 上海米菱电子有限公司
- 深圳市智创电机有限公司
- 深圳市杰美康机电有限公司
- 东莞市亚当电子科技有限公司
- 武汉正源高理光学有限公司
- 珠海凯邦电机制造有限公司
- 上海精浦机电有限公司
- 江苏略盛电子科技有限公司
- 深圳市研控自动化科技有限公司
- 上海微泓自动化设备有限公司
- 宁波中大力德智能传动股份有限
- 成都超德创机电设备有限公司
- 深圳市合发齿轮机械有限公司
- 温州汉桥科技有限公司
- 浙江工商职业技术学院智能制造
- 广东派莱特智能系统有限公司
- 上海英威腾工业技术有限公司
- 宁波中控微电子有限公司
- 普爱纳米位移技术(上海)有限
- 赣州诚正电机有限公司
- 三木普利(天津)有限公司上海
- 无锡新华光精机科技有限公司
- 广东宏博电子机械有限公司
- 纽泰克斯电线(潍坊)有限公司
- 杭州微光电子股份有限公司
- 北京和利时电机技术有限公司
- 广东七科电机科技有限公司
- 艾罗德克运动控制技术(上海)
- 大连普传科技股份有限公司
- 托菲传感技术(上海)股份有限
- 杭州中科伺尔沃电机技术有限公
- 苏州轻工电机厂有限公司
- 国讯芯微(苏州)科技有限公司
- 锋桦传动设备(上海)有限公司
- 科比传动技术(上海)有限公司
- 泰科电子(上海)有限公司
- 广东速美达自动化股份有限公司
- 安徽谨铭连接系统有限公司
- 沈机(上海)智能系统研发设计
- 宁波谷雷姆电子有限公司
- 深圳市人通智能科技有限公司
- 伦茨(上海)传动系统有限公司
- 连云港杰瑞电子有限公司
- 欧德神思软件系统(北京)有限
- 河源职业技术学院
- 凌华科技(中国)有限公司
- 浙江锐鹰传感技术有限公司
- 厦门唯恩电气有限公司
- 深圳市高川自动化技术有限公司
- 北一半导体科技(广东)有限公
- 深圳市步科电气有限公司
- 东莞市凯福电子科技有限公司
- 杭州海拓电子有限公司
- 乐星电气(无锡)有限公司
- 上海奥深精浦科技有限公司
- 崧智智能科技有限公司
- 珠海运控电机有限公司
- 常州拓自达恰依纳电线有限公司
- 浙江省诸暨市精益机电制造有限
- 深圳市多贺电气有限公司
- 上海赢双电机科技股份有限公司
- 日冲商业(昆山)有限公司
- 深圳市卓航自动化设备有限公司
- 苏州市凌臣采集计算机有限公司
- 南京芯驰半导体科技有限公司
- 福建睿能科技股份有限公司
- 深圳市如本科技有限公司
- 常州市常华电机股份有限公司
- 宁波众诺电子科技有限公司
- 联诚科技集团股份有限公司
- 山东中科伺易智能技术有限公司
- 广东奥普特科技股份有限公司
- 上海艾研机电控制系统有限公司
- 长广溪智能制造(无锡)有限公司
- 句容市百欧电子有限公司
- 深圳市康士达科技有限公司
- 深圳舜昌自动化控制技术有限公
- 昕芙旎雅商贸(上海)有限公司
- 北京科迪通达科技有限公司
- 成都中天自动化控制技术有限公
- 深圳市恒昱控制技术有限公司
- 众程技术(常州)有限公司
- 深圳市好上好信息科技股份有限
- 常州洛源智能科技有限公司
- 昆山艾尼维尔电子有限公司
- 深圳市迪维迅机电技术有限公司
- 尼得科控制技术公司
- 传周半导体科技(上海)有限公
- 纳博特南京科技有限公司
- 苏州海特自动化设备有限公司
- 深圳市华成工业控制股份有限公
- 宁波招宝磁业有限公司
- 南京菲尼克斯电气有限公司
- 长裕电缆科技(上海)有限公司
- 台州鑫宇海智能科技股份有限公
- 宁波银禧机械科技有限公司
- 江苏睿芯源科技有限公司
- 威图电子机械技术(上海)有限公
- 玛格电子技术(武汉)有限公司
- 福尔哈贝传动技术(太仓)有限公
- 武汉华大新型电机科技股份有限
- 永宏电机股份有限公司
- 浙江顶峰技术服务有限公司
- 上海先楫半导体科技有限公司
- 苏州阿普奇物联网科技有限公司
- 德缆(上海)电线电缆有限公司
- 广东英瑞沃电气科技有限公司
- 南京实点电子科技有限公司
- 广州丰盈机电科技有限公司
- 深圳市百亨电子有限公司
- 苏州德胜亨电缆科技有限公司
- 深圳三铭电气有限公司
- 嘉兴松州工业科技有限公司
- 苏州途亿通科技有限公司
- 上海数恩电气科技有限公司
- 昆山深裕泽电子有限公司
- 广东百能堡科技有限公司
- 深圳市嘉扬科技有限公司
- 宁波高胜电子有限公司
- 台州百格拉机电有限公司
- 上海弓望电子科技有限公司