AI时代下的手机:算力重要,电力更重要
2024/6/28 10:36:31 标签:中国传动网
硅碳负极材料显著提升了手机电池的能量密度,不少手机已开始迈上6000mAh的台阶。但在AI时代,光靠电池能量密度的提升可能并不能满足用户对续航的要求。
不久前,苹果首次向外界秀出了它在AI领域的布局和肌肉,包括一批AI功能对手机系统层面的改造,可以跨App协作,可以调用个人的数据和情境,同时与Open AI合作,把ChatGPT引入手机中。
但与此同时,AI对手机的电力消耗也引发了市场上的担忧。马斯克曾说:“AI技术的发展速度前所未见,到了明年人类就没有足够的电力来运行所有的芯片了。”OpenAI CEO奥特曼也提到,AI技术消耗的电力将远远超出人们预期。
事实上,无论是从云端调用大模型,还是在手机上直接运行参数量较小的模型,都将加快对电量的消耗。而手机电池容量这些年并没有多少增长,提升电池的容量成了和AI应用落地一样关键的事。
从芯片性能到大存储,从高刷屏幕到手机影像,每一个与用户体验密切相关的领域,在过去几年都经历了肉眼可见的变化。而如今,进展最缓慢的手机电池,也将在AI时代到来前开启新的内卷。
01手机电池开始内卷
2013年,iPhone5s搭载的A7处理器的晶体管数量为10亿个。十年后的2023年,iPhone15搭载了最新款的苹果芯片A17Pro,其晶体管数量达到了190亿个。十年时间,晶体管数量涨了19倍,摩尔定律并没有完全失效。
而反观电池容量,则出现了另一幅景象。iPhone5S的电池容量为1560mAh,而iPhone15标准版的电池容量也只有3349mAh。即便是安卓手机,前些年的手机容量普遍在4000-5000mAh徘徊。受限于材料,锂电池在1991年商用之后,其能量密度一直在缓慢发展,甚至一度有些停滞。
但情况正在发生改变。
6月20日,一加手机又开了一场“散装”发布会。这次是电池,一加与宁德新能源(ATL)联合发布了“冰川电池”,采用了当下最热门的硅碳负极电池。在冰川电池的加持下,一加Ace3Pro的电池容量首次达到6100mAh。虽然容量增加了,但体积相比5000mAh的普通石墨电池还减小了3%。
一加冰川电池发布次日,联想手机也透露,不久后发布的moto razr 新品将采用最新的电池解决方案,也用的是高电压硅碳负极,而联想给这个电池专门起了个名字——星海电池。据悉,这款电池的能量密度高达822Wh/L。
电池的内卷在此之前就已经开始了,最显著的表现是,每一家手机厂商都给自家的手机电池起了个大气磅礴的名字。除了一加的冰川电池,还有小米的金沙江电池、荣耀青海湖电池、华为巨鲸电池及vivo的蓝海电池等。好在手机品牌有限,不然湖海山川估计都不够用。
而这些电池无一例外,都采用了硅基负极(包括硅碳和硅氧负极等)。
早在2019年,小米的概念机型Max Alpha就搭载了纳米硅基电池。一年半后,小米11 Pro成为国内首款搭载硅基负极材料的手机,小米用的是硅氧负极,电池容量达到了5000mAh。很快,华为Mate Xs 2也采用了高硅负极电池。
2023年,荣耀Magic 5 Pro搭载荣耀发布的青海湖电池,被认为是首款将硅碳负极电池技术商用的智能手机产品。而vivo采用了新一代硅碳负极材料的蓝海电池,其能量密度比普通石墨负极电池高出约20%。该电池将由vivo S19系列手机搭载,首次突破809Wh/L能量密度。
不过,手机厂商用的硅碳负极电池背后,几乎都来自同一家供应商——ATL(宁德新能源)。经常有人将宁德时代和宁德新能源搞混淆。宁德新能源和宁德时代虽然渊源很深,但两家没有股权上的关系,而且业务方向也明显不同,宁德新能源专注于消费电子领域的锂电池生产,而宁德时代专注于动力电池。
在新的电池技术的加持下,电池容量纷纷迈上5500mAh的台阶。除了一加Ace3 Pro做到了6100mAh,搭载青海湖电池的荣耀Magic6Pro电池容量达到了5600mAh,而vivo的X100Ultra做到了5500mAh,S19也首次突破6000mAh。
手机续航也开始进入“2”时代。比如即将发布的一加Ace3Pro的DOU达到了2天,vivo旗下也有几款机型的DOU达到了这一数字。
其实,DOU(Daily Office Use,日常办公使用)是各家内部的一个测试指标,并没有统一的测试标准,但其逻辑是通过大数据,模拟用户一天的用机情况。而且,由于用户群体太复杂,每个个体对续航的体验和感受会存在差异。
不过,目前看来,能实现2天续航的机型基本不是直板旗舰机,要么是中低端机型,要么是折叠机型。旗舰机的电池容量虽然在硅碳负极的加持下,也在快速提升,但旗舰机的顶级配置,往往意味着功耗更大,而且各种大尺寸影像传感器对手机空间的占用比较高,所以还没有直板旗舰的DOU做到2天时间。
一加中国区总裁李杰说,硅碳负极和大容量电池,很快就会普及。除了一加Ace3Pro将首次搭载冰川电池,一加后续的项目中会普及大电池方案。
02大电池背后的努力
手机电池能量密度的显著提升,得益于硅基负极材料的商用。现在的手机锂电池由正负极、电解质和隔膜等几个部分组成,而正极材料基本是钴酸锂,负极材料是石墨。但石墨的能量密度已经快接近极限,新型的负极材料成为提升锂电池容量的关键。硅负极的比容量(4200 mAh/g)远高于石墨(372 mAh/g)的理论比容量。
硅碳负极其实不是新鲜词,早在上世纪70年代就已经开始提出了相应的概念。但因为首效和体积膨胀的问题,一直没能大规模使用。比如纯硅的体积膨胀可达石墨的三倍以上。但在几年前,美国一家硅碳复合材料公司Group 14,通过CVD气相沉积,制备出了新的材料,很大程度改善了硅的膨胀问题,并且已经成功实现产业化。宁德新能源(ATL)的硅碳负极材料就来自Group 14。ATL副总经理赵忠利告诉数智前线,硅碳负极电池去年才开始量产,主要是这几年解决了硅膨胀、首效低等问题,“在能够接受的成本下,让它的能量密度能够提升,让它的膨胀不是那么大。”ATL正在开足马力,生产硅碳负极电池,满足对手机厂商的供应,“现在行业在卷,竞争很激烈,速度就变得很快。”此前,有机构预测,预计到2025年,硅基材料使用比例将由目前的25%增长至40%。而且,目前的硅碳负极电池的硅含量大多在6%左右。真锂研究创始人墨柯告诉数智前线,随着多孔碳技术的成熟,在负极材料中提升硅含量还有很大潜力。这也意味着,随着硅含量的增加,电池的能量密度也将继续增长。事实上,为了提高锂电池的能量密度,业内一直在做着不同的努力。墨柯告诉数智前线,除了这次硅碳负极材料的突破,锂电池的能量密度在过去经历过几次大幅增长。比如提升材料的压实密度和提高电压。手机电池的正极材料钴酸锂,最开始的标准电压是3.7V,如今已经普遍提高到了3.8-3.9V,而一加冰川电池已经做到了4.53V。vivo不久前首发的半固态电池则是从电解质入手。电解质是正极和负极中间的材料,其作用是在正负极之间传输锂离子。之前都是液态电解质,但液态电解质存在漏液的问题,也存在安全性问题,锂枝晶会有正负极短路的风险。而且在低温环境下,续航也会降低。固态电解质可以避免这些问题。不过,目前固态电解质还有很长的路要走,半固态电池是一个过渡方案。除了正负极材料上下功夫,也开始有些厂商在改进电池的封装工艺。比如,此前有爆料称,三星Galaxy S24Ultra和苹果iPhone15都会采用堆叠式电池技术,以提高能量密度和延长使用寿命。传统的封装方法用的是卷绕工艺,但堆叠式工艺的优势是能减少空间浪费,提升同体积下的电池容量。目前堆叠式电池技术已经在电动汽车领域得到了广泛应用。不过,手机厂商还未正式发布相关电池。而苹果从iPhone X开始使用了双层主板和异形电池设计,来为iPhone塞入更大容量的电池。而很多安卓手机也采用了双电芯的做法,通过电路串联的方式,在一块电池里放入多个电芯,提高充电的效率。
03AI时代,光靠做大电池可能还不够
诺基亚最经典的功能机诺基亚1100,在全球共卖出了2.5亿部,成为手机历史上卖得最多的手机。而这款手机采用了BL-5C锂电池,容量只有850mAh。虽然容量不高,但续航时间却很长,官方待机时间达到了400小时。显然,手机续航的长短不仅与电池容量大小相关,也跟耗电量有非常大的关系。功能机基本是打电话、听歌、发短信,耗电非常有限。而智能机的高刷屏幕、芯片功耗不断提升,用户使用时长也在逐年增加,这些因素都使得虽然电池容量在缓慢增长,但赶不上用户的耗电需求。
曾有数码博主对2019年到2021年发布的近200款手机进行了续航测试。测试机型的平均电池容量为从2019年的3912.1mAh到4287.93mAh再到4498.49mAh,都是逐年上涨,但在“5小时续航测试”中,平均剩余电量几乎都没有变化,都在50%左右。这也说明,虽然电池容量提升了,但屏幕、Soc以及5G等因素的影响下,手机耗电量也在逐步增加。所以说,续航不仅要开源,节流同样重要。iPhone的电池容量一直不高,但续航并不算太差,其核心是对系统的优化和对芯片的调教。iOS系统有一套墓碑机制,它允许应用在进入后台后保留其状态,然后被“冻结”,确保它们在不活跃时进入低功耗状态,同时保留其状态以便快速恢复,以节省系统资源和电池。
安卓厂商这些年也在系统功耗优化方面做了很多努力。比如vivo通过系统轻量化提升了计算效率,通过不公平调度将系统资源优先分配给前台任务,提升了手机的续航体验。
OPPO也自研了“微架构超算引擎”,通过CPU调度平台,基于用户触觉、视觉、听觉为导向定制专属的CPU调频调度算法,降低高负载应用场景下的CPU功耗;支持动态帧率刷新,在不同场景下智能调整屏幕刷新率,降低高刷带来的屏幕功耗。而荣耀的都江堰电源管理系统则是通过硬件芯片+软件算法结合,实现了对电量精准测量、电池使用安全和充放电策略的全方位管理和优化。大家的思路都是通过系统层面的资源优化,来减少功耗,提高续航能力。但随着大模型时代的到来,AI对端侧算力和电力的消耗也已经引发了不少的担忧。虽然还没有机构或者厂商,统计过大模型在手机侧的应用会带来多少电力的消耗,而且现在手机上的AI能力有限,人们对功耗的感知也不强烈,但随着AI在手机系统层面的深度应用,必然会加大人们的续航焦虑。Group14 Technologies的首席执行官表示,智能手机新功能的不断增加驱动了对下一代电池技术的需求。他说:“如果硅负极电池能够提供超过50%的能量密度提升,那么无论设备的效率是否能同步提升,设备制造商在系统设计上的灵活性都将得到极大的增强。”
芯片厂商也在努力降低功耗。高通表示,骁龙X Elite芯片在运行微软的Copilot Plus人工智能助手时,电力消耗仅为传统芯片的十分之一,但性能输出却与之相当。
一直以来,电池材料的革新和手机系统和功能的膨胀是一个矛盾的两面,在即将到来的AI手机时代,除了电池材料的进步,如何降低手机本身的功耗将是保证体验的一大关键。
供稿:维科网
本文链接:http://www.cmcia.cn/content.aspx?url=rew&id=4488
相关新闻
- 2025-07-10AI 算力爆发!ifm 浸没槽冷却技术如何攻克数据中心散热难题?
- 2025-07-03微软AI芯片量产延至2026年
- 2025-07-03从激光雷达争议到具身智能破局:AI 产业的技术博弈与范式革命
- 2025-07-02苹果自研AI模型难产:改用第三方大语言模型
- 2025-07-01百度开源文心大模型4.5系列模型 中国算力平台率先上线
- 2025-06-26全国首个海事智能客服上线!船员服务驶入“AI新时代”
- 2025-06-25人工智能进校园:智启未来 AI筑梦

成员中心
- 上海会通自动化科技发展有限公
- 中达电通股份有限公司
- 长春禹衡光学有限公司
- 睿工业
- 广东美的智能科技有限公司
- 高创传动科技开发(深圳)有限
- 南京埃斯顿自动化股份有限公司
- 哈尔滨工业大学
- 深圳市机械行业协会
- 广东省自动化学会
- 广东省机械工程学会
- 华南智能机器人创新研究院
- 深圳市机器人协会
- 富士康科技集团
- 深圳众为兴技术股份有限公司
- 南京诚达运动控制系统有限公司
- 常州精纳电机有限公司
- 杭州之山智控技术有限公司
- 杭州中达电机有限公司
- 杭州日鼎控制技术有限公司
- 杭州米格电机有限公司
- 上海新时达电气股份有限公司
- 上海登奇机电技术有限公司
- 上海三竹机电设备有限公司
- 深圳市艾而特工业自动化设备有
- 深圳市亿维自动化技术有限公司
- 湖南科力尔电机股份有限公司
- 深圳市四方电气技术有限公司
- 武汉迈信电气技术有限公司
- 广东省珠峰电气股份有限公司
- 清能德创电气技术(北京)有限公
- 毕孚自动化设备贸易(上海)有
- 富士电机(中国)有限公司
- 松下电器机电(上海)有限公司
- 路斯特运动控制技术(上海)有
- 西门子(中国)有限公司
- ABB(中国)有限公司
- 施耐德电气(中国)投资有限公
- 丹佛斯(中国)投资有限公司
- 三菱电机自动化(上海)有限公
- 安川電機(中国)有限公司
- 欧姆龙自动化(中国)有限公司
- 山洋电气(上海)贸易有限公司
- 柯马(上海)工程有限公司
- 康耐视
- 埃莫运动控制技术(上海)有限
- 上海安浦鸣志自动化设备有限公
- 诺德(中国)传动设备有限公司
- 利莱森玛电机科技(福州)有限
- 易格斯(上海)拖链系统有限公
- ACS Motion Control(弘柏商贸(
- 苏州钧和伺服科技有限公司
- 北京研华兴业电子科技有限公司
- 台安科技(无锡)有限公司
- 海顿直线电机(常州)有限公司
- 杭州摩恩电机有限公司
- 梅勒电气(武汉)有限公司
- 亚德诺半导体技术有限公司
- 上海挚驱电气有限公司
- 上海鸿康电器有限公司
- 上海开通数控有限公司
- 上海翡叶动力科技有限公司
- 上海维宏电子科技股份有限公司
- 上海弈猫科技有限公司
- 和椿自动化(上海)有限公司
- 光洋电子(无锡)有限公司
- 图尔克(天津)传感器有限公司
- 堡盟电子(上海)有限公司
- 广东西克智能科技有限公司
- 约翰内斯·海德汉博士(中国)
- 宜科(天津)电子有限公司
- 美国邦纳工程国际有限公司
- 库伯勒(北京)自动化设备贸易
- 奥托尼克斯电子(嘉兴)有限公
- 皮尔磁工业自动化(上海)有限
- 易盼软件(上海)有限公司
- 深圳市凯德电线电缆有限公司
- 恒科鑫(深圳)智能科技有限公
- 深圳市英威腾电气股份有限公司
- 深圳威科达科技有限公司
- 深圳市微秒控制技术有限公司
- 深圳易能电气技术股份有限公司
- 深圳市正运动技术有限公司
- 深圳市合信自动化技术有限公司
- 深圳市吉恒达科技有限公司
- 深圳锐特机电有限公司
- 深圳市顾美科技有限公司
- 深圳安纳赫科技有限公司
- 深圳市金宝佳电气有限公司
- 深圳市泰格运控科技有限公司
- 深圳市麦格米特驱动技术有限公
- 深圳市汇川技术股份有限公司
- 深圳市库马克新技术股份有限公
- 深圳市蓝海华腾技术股份有限公
- 深圳市正弦电气股份有限公司
- 深圳市艾威图技术有限公司
- 无锡信捷电气股份有限公司
- 台州市格特电机有限公司
- 天津龙创恒盛实业有限公司
- 武汉华中数控股份有限公司
- 四川零点自动化系统有限公司
- 庸博(厦门)电气技术有限公司
- 北京凯恩帝数控技术有限责任公
- 北京配天技术有限公司
- 欧瑞传动电气股份有限公司
- 航天科技集团公司第九研究院
- 西安微电机研究所
- 兰州电机股份有限公司
- 太仓摩力伺服技术有限公司
- 泰志达(苏州)自控科技有限公
- 无锡创正科技有限公司
- 宁波菲仕电机技术有限公司
- 杭州中科赛思伺服电机有限公司
- 世协电机股份有限公司
- 太仓摩讯伺服电机有限公司
- 浙江禾川科技股份有限公司
- 腾禾精密电机(昆山)有限公司
- 杭州纳智电机有限公司
- 杭州德力西集团有限公司
- 嘉兴德欧电气技术有限公司
- 卧龙电气集团股份有限公司
- 宁波海天驱动有限公司
- 德恩科电机(太仓)有限公司
- 常州展帆电机科技有限公司
- 固高科技(深圳)有限公司
- 广东科动电气技术有限公司
- 深圳市百盛传动有限公司
- 广州赛孚德电气有限公司
- 广州金升阳科技有限公司
- 广东伊莱斯电机有限公司
- 珠海市台金科技有限公司
- 东莞市卓蓝自动化设备有限公司
- 东莞新友智能科技有限公司
- 成都思迪机电技术研究所
- 深圳市英威腾智能控制有限公司
- 深圳锦凌电子股份有限公司
- 深圳市雷赛智能控制股份有限公
- 深圳市雷赛控制技术有限公司
- 横川机器人(深圳)有限公司
- 武汉久同智能科技有限公司
- 深圳市默贝克驱动技术有限公司
- 深圳众城卓越科技有限公司
- 泉州市桑川电气设备有限公司
- 江苏本川智能电路科技股份有限
- 台州市金维达电机有限公司
- 深圳市多维精密机电有限公司
- 上海尚通电子有限公司
- 配天机器人技术有限公司
- 瑞普安华高(无锡)电子科技有
- 深圳市青蓝自动化科技有限公司
- 广东科伺智能股份科技有限公司
- 东莞市成佳电线电缆有限公司
- 深圳市朗宇芯科技有限公司
- 深圳软赢科技有限公司
- 常州市领华科技自动化有限公司
- 杭州众川电机有限公司
- 江苏智马科技有限公司
- 海禾动力科技(天津)有限公司
- 杭州赛亚传动设备有限公司
- 广州富烨自动化科技有限公司
- 日立产机系统(中国)有限公司
- 魏德米勒电联接(上海)有限公
- 东莞市安扬实业有限公司
- CC-Link协会
- 北京精准博达科技有限公司
- 深圳市山龙智控有限公司
- 苏州伟创电气设备技术有限公司
- 上海相石智能科技有限公司
- 上海米菱电子有限公司
- 深圳市智创电机有限公司
- 深圳市杰美康机电有限公司
- 东莞市亚当电子科技有限公司
- 武汉正源高理光学有限公司
- 珠海凯邦电机制造有限公司
- 上海精浦机电有限公司
- 江苏略盛电子科技有限公司
- 深圳市研控自动化科技有限公司
- 上海微泓自动化设备有限公司
- 宁波中大力德智能传动股份有限
- 成都超德创机电设备有限公司
- 深圳市合发齿轮机械有限公司
- 温州汉桥科技有限公司
- 浙江工商职业技术学院智能制造
- 广东派莱特智能系统有限公司
- 上海英威腾工业技术有限公司
- 宁波中控微电子有限公司
- 普爱纳米位移技术(上海)有限
- 赣州诚正电机有限公司
- 三木普利(天津)有限公司上海
- 无锡新华光精机科技有限公司
- 广东宏博电子机械有限公司
- 纽泰克斯电线(潍坊)有限公司
- 杭州微光电子股份有限公司
- 北京和利时电机技术有限公司
- 广东七科电机科技有限公司
- 艾罗德克运动控制技术(上海)
- 大连普传科技股份有限公司
- 托菲传感技术(上海)股份有限
- 杭州中科伺尔沃电机技术有限公
- 苏州轻工电机厂有限公司
- 国讯芯微(苏州)科技有限公司
- 锋桦传动设备(上海)有限公司
- 科比传动技术(上海)有限公司
- 泰科电子(上海)有限公司
- 广东速美达自动化股份有限公司
- 安徽谨铭连接系统有限公司
- 沈机(上海)智能系统研发设计
- 宁波谷雷姆电子有限公司
- 深圳市人通智能科技有限公司
- 伦茨(上海)传动系统有限公司
- 连云港杰瑞电子有限公司
- 欧德神思软件系统(北京)有限
- 河源职业技术学院
- 上海凌华智能科技有限公司
- 浙江锐鹰传感技术有限公司
- 厦门唯恩电气有限公司
- 深圳市高川自动化技术有限公司
- 北一半导体科技(广东)有限公
- 深圳市步科电气有限公司
- 东莞市凯福电子科技有限公司
- 杭州海拓电子有限公司
- 乐星电气(无锡)有限公司
- 上海奥深精浦科技有限公司
- 崧智智能科技有限公司
- 珠海运控电机有限公司
- 常州拓自达恰依纳电线有限公司
- 浙江省诸暨市精益机电制造有限
- 深圳市多贺电气有限公司
- 上海赢双电机科技股份有限公司
- 日冲商业(昆山)有限公司
- 深圳市卓航自动化设备有限公司
- 苏州市凌臣采集计算机有限公司
- 南京芯驰半导体科技有限公司
- 福建睿能科技股份有限公司
- 深圳市如本科技有限公司
- 常州市常华电机股份有限公司
- 宁波众诺电子科技有限公司
- 联诚科技集团股份有限公司
- 山东中科伺易智能技术有限公司
- 广东奥普特科技股份有限公司
- 上海艾研机电控制系统有限公司
- 长广溪智能制造(无锡)有限公司
- 句容市百欧电子有限公司
- 深圳市康士达科技有限公司
- 深圳舜昌自动化控制技术有限公
- 昕芙旎雅商贸(上海)有限公司
- 北京科迪通达科技有限公司
- 成都中天自动化控制技术有限公
- 深圳市恒昱控制技术有限公司
- 众程技术(常州)有限公司
- 深圳市好上好信息科技股份有限
- 常州洛源智能科技有限公司
- 昆山艾尼维尔电子有限公司
- 深圳市迪维迅机电技术有限公司
- 尼得科控制技术公司
- 传周半导体科技(上海)有限公
- 纳博特南京科技有限公司
- 苏州海特自动化设备有限公司
- 深圳市华成工业控制股份有限公
- 宁波招宝磁业有限公司
- 南京菲尼克斯电气有限公司
- 长裕电缆科技(上海)有限公司
- 台州鑫宇海智能科技股份有限公
- 宁波银禧机械科技有限公司
- 江苏睿芯源科技有限公司
- 威图电子机械技术(上海)有限公
- 玛格电子技术(武汉)有限公司
- 福尔哈贝传动技术(太仓)有限公
- 武汉华大新型电机科技股份有限
- 永宏电机股份有限公司
- 浙江顶峰技术服务有限公司
- 上海先楫半导体科技有限公司
- 苏州阿普奇物联网科技有限公司
- 德缆(上海)电线电缆有限公司
- 广东英瑞沃电气科技有限公司
- 南京实点电子科技有限公司
- 广州丰盈机电科技有限公司
- 深圳市百亨电子有限公司
- 苏州德胜亨电缆科技有限公司
- 深圳三铭电气有限公司
- 嘉兴松州工业科技有限公司
- 苏州途亿通科技有限公司
- 上海数恩电气科技有限公司
- 昆山深裕泽电子有限公司
- 广东百能堡科技有限公司
- 深圳市嘉扬科技有限公司
- 宁波高胜电子有限公司
- 台州百格拉机电有限公司
- 上海弓望电子科技有限公司